

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of a novel, potent and orally active series of γ -lactams as selective NK₁ antagonists

Sunil Paliwal ^{a,*}, Gregory A. Reichard ^a, Sapna Shah ^a, Michelle Laci Wrobleski ^a, Cheng Wang ^a, Carmine Stengone ^a, Hon-Chung Tsui ^a, Dong Xiao ^a, Ruth A. Duffy ^b, Jean E. Lachowicz ^b, Amin A. Nomeir ^c, Geoffrey B. Varty ^b, Neng-Yang Shih ^a

- ^a Chemical Research Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
- ^b CNS Biology Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
- ^c Department of Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA

ARTICLE INFO

Article history: Received 25 April 2008 Revised 19 May 2008 Accepted 19 May 2008 Available online 24 May 2008

Keywords: NK1 Substance P Emesis CNS Lactam

ABSTRACT

Strategic replacement of the nitrogen of the lead compound $\mathbf{1}$ in the original cyclic urea series with a carbon resulted in the discovery of a novel, potent and orally more efficacious γ -lactam series of selective NK₁ antagonists. Optimization of the lactam series culminated in the identification of compounds with high binding affinity and excellent oral CNS activity.

© 2008 Elsevier Ltd. All rights reserved.

The mammalian tachykinin Substance P (SP) has been implicated in a number of pathological conditions in the central nervous system (CNS) and peripheral tissues including pain, inflammation, depression, anxiety, emesis and nausea. SP preferentially binds to the NK_1 receptor. Therefore, an antagonist of the NK_1 receptor has potential therapeutic use in the treatment of a variety of central and peripheral diseases.

Recently, we reported a novel series of cyclic urea derivatives as potent and selective NK₁ receptor antagonists that are orally active and have good CNS penetration.² SAR evaluation in this series led to the identification of a five-membered unsubstituted urea analogue **1** as the lead compound.^{2b} Compound **1** exhibited sub-nanomolar binding affinity for the NK₁ receptor (K_i = 0.6 nM) and moderate oral CNS activity (57% inhibition of foot tapping at 1 mg/kg po following a 4 h pretreatment time) in the in vivo gerbil foot tapping (GFT) inhibition assay.³

Metabolism studies of 1 indicated hydroxylation at the carbon next to urea nitrogen as the major route of metabolism. In an effort to alter the metabolic processing of the urea ring, while improving the biology of the compound, we sought to replace the urea nitrogen adjacent to the site of oxidative metabolism of 1 with a carbon.

The resulting $\gamma\text{-lactam}$ compound $\boldsymbol{2}$ was prepared and evaluated for biological response. 5

The synthesis of the unsubstituted γ -lactam ${\bf 2}$ is outlined in Scheme 1. Hydrolysis of chiral amino amide ${\bf 3}^6$ to amino acid by heating with barium hydroxide, followed by treatment with Bocanhydride provided Boc-protected amino acid ${\bf 4.}^7$ Reaction of ${\bf 4}$ with triphosgene afforded useful Boc-NCA intermediate ${\bf 5.}^8$ Subsequent reduction of ${\bf 5}$ with lithium borohydride followed by oxidation with sodium hypochlorite provided aldehyde ${\bf 6.}$ Horner-Emmons olefination of ${\bf 6}$ with methyl diethylphosphonoacetate followed by hydrogenation gave the compound ${\bf 7.}$ Cyclization of ${\bf 7}$ in presence of trimethylaluminum and subsequent deprotection provided the desired γ -lactam ${\bf 2.}^9$

^{*} Corresponding author. Tel.: +1 908 740 2603; fax: +1 908 740 7305. E-mail address: sunil.paliwal@spcorp.com (S. Paliwal).

Scheme 1. Reagents and conditions: (a) $Ba(OH)_2$, H_2O , $156 \,^{\circ}C$, $72 \, h$; (b) $(Boc)_2O$, THF, rt, $18 \, h$, 65% over two steps; (c) $(CCl_3O)_2CO$, i-Pr $_2EtN$, CH_2Cl_2 , $0 \,^{\circ}C$, $15 \, min$, then rt, $18 \, h$; (e) TEMPO, NaOCl, NaBr, satd aq NaHCO $_3$, EtOAc, $0 \,^{\circ}C$, $1.5 \, h$, 92% over three steps; (f) $(C_2H_5O)_2P(O)CH_2CO_2CH_3$, NaH, THF, $0 \,^{\circ}C$, $15 \, min$, then rt, $2.5 \, h$, 92%; (g) H_2 , $10\% \, Pd/C$, $1 \, atm$, rt, $18 \, h$, 91%; (h) $(CH_3)_3Al$, toluene, $0 \,^{\circ}C$, $15 \, min$, then rt, $30 \, min$, 84%; (i) TFA, CH_2Cl_2 , rt, $2.5 \, h$, 84%.

 γ -Lactam **2** retained high NK₁ binding affinity ($K_i = 1 \text{ nM}$) and maintained good selectivity over NK₂ and NK₃ receptors. ¹⁰ Moreover, lactam **2** demonstrated superior oral activity compared to **1** (GFT inhibition at 1 mg/kg: **2** = 92, 78, 47%; **1** = 35, 57, 48% following 2, 4, 6 h pretreatment times, respectively).

We next investigated substitutions effect at the carbon alpha to the carbonyl of the γ -lactam **2**. The syntheses of the α -substituted γ -lactam analogues **2a-o** are shown in Scheme 2. Alkylation of Boc-protected lactam 8 with methyl iodide using LDA followed by separation of isomers by column chromatography and subsequent deprotection with trifluoroacetic acid afforded α-methyl substituted lactams 2a and 2b. Treatment of the anion derived from 8 with trisyl azide and subsequent deprotection provided the desired azide substituted compound **9** and a side product **10**. Reduction of 10 with lithium borohydride yielded a diastereomeric mixture of hydoxy-lactam 2c. Hydrogenation of azide-lactam 9 afforded amino-lactam 2d as a mixture of diastereomers. Acylation of 2d with acetyl chloride and propionyl chloride followed by separation of isomers provided compounds 2e, 2f and 2i, 2j, respectively. Similarly, treatment of amine 2d with methanesulfonyl chloride and separation of isomers afforded compounds 2g and 2h. Alkylation and subsequent cyclization of amine 2d with ethyl 4-bromobutyrate in presence of trimethylaluminum followed by separation of isomers by HPLC on a Chiracel OD® column afforded five-membered cyclic amide substituted analogues 2k and 2l. Acylation of amine 2d with 5-chlorovaleryl chloride followed by subsequent cyclization upon heating with sodium hydride in THF at 60 °C provided six-membered cyclic amide substituted analogues 2m and 2n. Cyclization of amine 11 with 1,4-dibromobutane afforded cyclic amine compound 20.

The in vitro NK_1 receptor binding and in vivo GFT inhibition data for α -substituted γ -lactams **2a–o** are listed in Table 1. All the compounds except two (**2c** and **2d**) were tested as single isomer.¹² It can be seen that high affinity is generally achieved, most

Scheme 2. Reagents and conditions: (a) i-0.5 M LDA, THF, -78 °C, 1 h, then CH₃I, ii-separation of isomers; (b) 4 M HCI/dioxane, CH₂Cl₂, 0 °C, 3 h, **2a** (17%) and **2b** (36%) over two steps; (c) 0.5 M KHMDS, THF, -78 °C, 30 min, trisyl azide, -78 °C, 4 h, AcOH, separate desired two compounds, then step b, **9** (30%) and **10** (22%) over two steps; (d) LiBH₄, THF, rt, 6 h, 83%; (e) H₂, 10% Pd/C, 1 atm, rt, 24 h, 68%; (f) i-RCOCl, i-Pr₂EtN, CH₂Cl₂, 0 °C, 15 min, then rt, 18 h, ii-separation of isomers; (g) CH₃SO₂Cl, i-Pr₂EtN, CH₂Cl₂, 0 °C, 15 min, then rt, 2 h, **2g** (39%) and **2h** (28%); (h) i-2 M AlMe₃, toluene, 0 °C to rt, 15 min, ethyl 4-bromobutyrate, 100 °C, 18 h; ii-separation of isomers by HPLC on a Chiralcel OD® column eluting with 10% hexane/90% IPA, **2k** (35%) and **2l** (18%); (i) i-5-chlorovaleryl chloride, Et₃N, CH₂Cl₂, 0 °C, 5 min, then rt, 18 h, ii-NaH, THF, 0 °C, 5 min, then 60 °C, 5 h; iii-separation of isomers by HPLC on a Chiralcel OD® column eluting with 10% hexane/90% IPA, **2m** (42%) and **2n** (19%); (j) 1,4-dibromobutane, toluene, 110 °C, 48 h, 36%.

20

11

compounds having a K_i below 1 nM. α -Substitution by a methyl group provided diastereomers **2a** and **2b**. Diastereomer **2a** having

Table 1 NK₁ receptor binding affinity and GFT inhibition for compounds **2a–o**

Compounda	R ¹	$NK_1^b K_i (nM)$	GFT ^c (% inh.)		
			t = 2 h	<i>t</i> = 4 h	t = 6 h
2 2a	-H { ⊸ CH ₃	0.6 0.7	92 77	78 85	47 44
2b	ξ·····CH ₃	2.0	11	2	36
2c	{ −ОН	0.5	27	35	1
2d	ξ—NH ₂	0.4	5	13	11
2e	§ ⊸ NHAc	0.3	94	94	91
2f	ξ····NHAc	0.9	80	97	71
2g	₹-NHSO ₂ CH ₃	0.6	10	58	43
2h	ξ····NHSO₂CH₃	2.6	0	15	0
2i	₹-NH(CO)CH ₂ CH ₃	0.3	84	97	90
2j	ξ····NH(CO)CH ₂ CH ₃	0.3	83	16	19
2k	0	0.2	100	100	98
21	€IN	0.5	49	46	39
2m	~_N	0.2	74	37	63
2n	§N	0.2	20	26	56
20	{−N	0.4	78	60	45

 $^{^{\}rm a}$ Compounds 2c and 2d are mixture of diasteromers; all other analogues are single isomer.

a *cis* configuration of methyl group relative to the phenyl group exhibited better binding and GFT inhibition activity than the diasteromer **2b**. Though methyl substituted lactam **2a** possessed good potency and oral efficacy, it did not display any advantage over the unsubstituted lactam lead compound **2**.

We next evaluated the effect of α -substitution by polar groups. Introduction of a hydroxyl group (2c) and an amino group (2d) at the α -position slightly improved the NK₁ affinity compared to the lead compound 2 but resulted in significantly reduced GFT inhibition activity. The acetylation of the amino group of compound 2d provided compounds 2e and 2f with high NK₁ affinity (2e, $K_i = 0.3$ nM and 2f, $K_i = 0.9$ nM) and excellent GFT profile (2e, >90% inhibition and 2f, >70% inhibition following 2-6 h pretreatment). Surprisingly, methyl sulfonamides 2g and 2f did not show good in vivo activity. Extension of methyl to ethyl amides 2f and 2f retained excellent in vitro activity ($K_i = 0.3$ nM for both). Interestingly, these diastereomers showed different GFT profile despite the same binding affinity. Diastereomer 2f having ethyl amide

group *cis* to the phenyl group exhibited superior GFT inhibition activity than the other diastereomer **2i**.

In addition to the acyclic, the cyclic amides such as lactams **2k-n** were also found to be well tolerated. Compared to six-membered cyclic amides 2m and 2n, corresponding five-membered cyclic amides 2k and 2l, respectively, demonstrated better GFT inhibition profile. As previously seen with acyclic analogues, the cyclic amides **2k** and **2m** having the cyclic amide groups *cis* relative to the phenyl displayed greater GFT inhibition activity than the corresponding trans isomers 21 and 2n, respectively. The reason for generally superior GFT profile seen with isomer having a cis configuration than trans between the R¹ group and phenyl is not clear. Among all the cyclic amides tested, five-membered amide 2k exhibited the best combination of high NK_1 affinity ($K_i = 0.2 \text{ nM}$) and excellent oral activity (>98% GFT inhibition following 2-6 h pretreatment). Removal of the carbonyl group of **2k** provided compound **20** which maintained good NK₁ activity ($K_i = 0.4 \text{ nM}$) but displayed decreased GFT inhibition activity.

Similar to the unsubstituted γ -lactam **2** the α -substituted lactams retained good selectivity over other neurokinin receptors. For example, **2e**: NK₂ = 1.4% inhibition at 3 μ M, NK₃ = 43% inhibition at 10 μ M; **2k**: NK₂ = 28% inhibition at 3 μ M, NK₃ K_i = 1254 nM.

In conclusion, changing urea to γ -lactam core structure resulted in the discovery of a novel and potent series of selective NK₁ antagonists with significantly improved in vivo activity. Optimization of the γ -lactam lead compound **2** by α -substitution provided compounds **2e** and **2k** which display high NK₁ affinity ($K_i \leq 0.3$ nM) and excellent oral activity (>90% GFT inhibition following 2–6 h pretreatment).

References and notes

- (a) Duffy, R. A. Exp. Opin. Emerg. Drugs 2004, 9, 9; (b) Seward, E. M.; Swain, C. J. Exp. Opin. Ther. Pat. 1999, 9, 571.
- (a) Shue, H.-J.; Chen, X.; Shih, N.-Y.; Blythin, D. J.; Paliwal, S.; Lin, L.; Gu, D.; Schwerdt, J. H.; Shah, S.; Reichard, G. A.; Piwinski, J. J.; Duffy, R. A.; Lachowicz, J. E.; Coffin, V. L.; Liu, F.; Nomeir, A. A.; Morgan, C. A.; Varty, G. B. Bioorg. Med. Chem. Lett. 2005, 15, 3896; (b) Shue, H.-J.; Chen, X.; Schwerdt, J. H.; Paliwal, S.; Blythin, D. J.; Lin, L.; Gu, D.; Lin, L.; Wang, C.; Reichard, G. A.; Wang, H.; Piwinski, J. J.; Duffy, R. A.; Lachowicz, J. E.; Coffin, V. L.; Nomeir, A. A.; Morgan, C. A.; Varty, G. B.; Shih, N-Y. N.-Y. Bioorg. Med. Chem. Lett. 2006, 16, 1065.
- B. Gerbil foot tapping (GFT) inhibition assay measures the potency of compounds to antagonize an NK₁-receptor mediated CNS effect (GFT) induced by an NK₁ agonist administered centrally. Gerbil foot tapping inhibition assay: the NK₁ agonist GR73632 (3 pmol in 5 µl) was administered centrally to female Mongolian gerbils via icv injection. Immediately following recovery from the anesthesia, gerbils were placed into clear Plexiglas boxes for 5 min, and the duration of foot tapping was measured. Foot tapping was defined as rhythmic, repetitive tapping of the hind feet. NK₁ antagonists were administered orally in 0.4% methylcellulose in distilled water at a dose of 1 mg/kg (unless otherwise stated) at various pretreatment times prior to injection of GR73632. Data are expressed as a percent decrease (% inhibition) in the amount of time spent foot tapping compared to vehicle-treated controls.⁴
- 4. Rupniak, N. M. J.; Williams, A. R. Eur. J. Pharmacol. 1994, 265, 179.
- 5. This work was presented in part at the 234th National Meeting of the American Chemical Society, Boston, MA, August 19–23, 2007; MEDI 422.
- Reichard, G. A.; Stengone, C.; Paliwal, S.; Mergelsberg, I.; Majmundar, S.; Wang, C.; Tiberi, R.; McPhail, A. T.; Piwinski, J. J.; Shih, N.-Y. Org. Lett. 2003, 23, 4249.
- 7. Attempt to directly hydrolyze amino amide 1 to corresponding amino acid under acidic condition by heating with concentrated hydrochloric acid was unsuccessful. This result is consistent with Seebach's observation with similar substrates (see Studer, A.; Seebach, D. Liebigs Ann. Chem. 1995, 2, 217). Seebach's solution to this problem was a four steps procedure utilizing an intermediate benzamide for anchimeric assistance. Herein, we report that hindered α,α-disubstituted amino amide can be cleaved to respective amino acids in one step by heating amino amide with barium hydroxide at 156 °C.
- 8. Urethane-protected N-carboxy anhydrides (UNCA) have been reported as useful intermediates for peptide synthesis (see Fuller, W. D.; Chen, M. P.; Shabankareh, M.; Blair, R. K. J. Am. Chem. Soc. 1990, 112, 7414). The reports of UNCA to date have been restricted to α-amino acids and the standard procedure for their synthesis is acylation of the corresponding NCA. We found that α,α-disubstituted UNCA derivative (Boc-NCA) can be prepared from corresponding amino acid by first treatment of the amino acid with Boc anhydride and then reaction with triphosgene.
- Taschner, M. J.; Huang, Y.; El-Alali, A.; Chen, L.; Youngs, W. J. Tetrahedron Lett. 1992, 33, 2765.

^b See Ref. 13.

^c See Ref. 3.

- 10. $NK_2 = 0.1\%$ inhibition at 3 μ M; $K_i (NK_3) = 3815 \text{ nM.}^{11}$
- 11. NK₂ and NK₃ binding assays: binding data are the average of two or three independent determinations. Receptor binding assays were performed on membrane preparations from CHO cells in which recombinant human NK₂ and NK₃ receptors were expressed. [³H]-Neurokinin A and [¹²⁵I]-neurokinin B were used as the ligands for the NK₂ and NK₃ receptor assays, at concentrations near their experimentally derived K_d value. K_i values were obtained using the Cheng and Prusoff equation.
- 12. Configuration of R¹ group was assigned based on the NOE experiments. In *cis*isomers, NOEs are seen from the CH hydrogen of the CH(R¹) group to one of the methylene (CH₂) hydrogen of the ether side chain, indicating R¹ group is *cis* to phenyl. In *trans*-isomers, NOEs are observed from the CH hydrogen of the
- $\mathsf{CH}(\mathsf{R}^1)$ group to the o-hydrogens of the phenyl group, suggesting R^1 group is trans to phenyl.
- 13. NK₁ binding assay: Binding data are the average of two or three independent determinations. Receptor binding assay was performed on membrane preparations from CHO cells in which recombinant human NK₁ receptor was expressed. [³H]-Sar-Met Substance P was used as the ligand for the NK₁ assay, at concentrations near the experimentally derived *K*_d value. *K*_i values were obtained using the Cheng and Prusoff equation.¹⁴
- Cascieri, M. A.; Macleod, A. M.; Underwood, D.; Shiao, L.-L.; Ber, E.; Sadowski, S.; Yu, H.; Merchant, K. J.; Swain, C. J.; Strader, C. D.; Fong, T. M. J. Biol. Chem. 1994, 269, 6587.